数据智能标签,精准管理数据
1、场景案例
互联网行业的朋友一定了解或者听说过下列几个场景:
阿里:千人千面,意思不同用户使用阿里相关的产品感觉是不一样的,例如支付宝首页的推荐内容,和其他相关推荐流信息是完全不同的。
腾讯:社交广告,不同用户的朋友圈或者其他媒体场景下的广告信息是不同的,会基于用户特征推荐。
头条:信息价值,根据用户浏览信息,分析用户相关喜好,针对分析结果推荐相关的信息流,越关注某类内容,获取相关的信息越多。
如上几种场景的逻辑就是:基于不断分析用户的行为,生成用户的特征画像,然后再基于用户标签,定制化的推荐相关内容。
2、基本概念
通过上面的场景,衍生出来两个概念:
用户画像
用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,把该用户相关联的数据的可视化的展现,就形成了用户画像。用户画像在各领域得到了广泛的应用,最初是在电商领域得到应用的,在大数据时代背景下,用户信息充斥在网络中,将用户的每个具体信息抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务。
数据标签
标签在生活中非常常见,比如商品标签,个人标签,行业标签,例如提到996就想到程序员,提到程序员就想到格子衫。
标签是把分散的多方数据进行整合纳入统一的技术平台,并对这些数据进行标准化和细分,进行结构化存储和更新管理,让业务线可以把这些细分结果推向现有的互动营销环境里的平台,产生价值,这些数据称为标签数据,也就是常说的标签库。数据标签的概念也是在最近几年大数据的发展中不断火热起来的。
数据标签价值
精细运营的基础,有效提高流量精准和效率。
帮助产品快速定位需求人群,进行精准营销;
能帮助客户更快切入到市场周期中;
深入的预测分析客户并作出及时反应;
基于标签的开发智能推荐系统;
基于某类用户的分析,洞察行业特征;
数据标签的核心价值,或者说最常用的场景:实时智能推荐,精准化数字营销。
3、应用案例
从流程和业务层面描述都是简单的,到开发层面都会变得复杂和不好处理,这可能就是产品和开发之间的隔阂。
标签的数据类型
不同标签的分析结果需要用不同的数据类型描述,在标签体系中,常用描述标签的数据类型如下:枚举、数值、日期、布尔、文本类型。不同的类型需要不一样的分析流程。
商品和数据标签
这里提供一个基础案例,用商品的标签来分析商品,例如通过商品产地,价格,状态等条件,来查询产品库有多少符合条件的商品。
数据表设计
主要分四张表:标签分类,标签库,标签值,标签数据。